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Abstract— Resilient monitoring systems are sensor networks
that degrade gracefully under malicious attacks on their
sensors, causing them to project misleading information.
The goal of this paper is to design, analyze, and evaluate
the performance of a resilient monitoring system intended
to monitor plant conditions (normal or anomalous). The
architecture developed consists of four layers: data quality
assessment, process variable assessment, plant condition
assessment, and sensor network adaptation. Each of these
layers is analyzed by either analytical or numerical tools,
and the performance of the overall system is evaluated using
simulations. The measure of resiliency of the resulting system
is evaluated using Kullback-Leibler divergence, and is shown
to be sufficiently high in all scenarios considered. -

[. INTRODUCTION
This  paper is devoted to the design, analysis, and
performance evaluation of an autonomous  decentralized
monitoring system that degrades gracelully under malicious
attacks on its sensors. We refer (o such a system as resilient.

The sensor network addressed in this paper is intended to
measure process variables. e.g., temperature, pressure, flow
rate. etc., at various parts of a plant (e.g.. power plant),
and assess the plant’s condition, e.g., normal or anomalous.
When sensors are under attack, the sensor network must
restructure itsell. either by re-assigning some sensors or
discounting measurements of others, or both, so that the best
plant condition assessment is ascertained.

If the sensor malfunctioning were statistical. e.g.. only
the variance of the sensor measurement were maliciously
changed. numerous statistical tools could be applied to
evaluate the process variables and use them for plant
assessment and subsequent sensor network adaptation. We
assume. however, that the attacker may force a sensor to
project misleading data, i.e., data, which are statistically
unrelated to the process variable, and characterize the level
of discrepancy by a scalar parameter referred to as data
quality (D). In this situation, statistical methods become
insufficient for process variable assessment. and. therefore,
models of the attacker, DQ, and the effect of DQ on
process variable identification must be introduced. This leads
to a four-layer resilient monitoring system. designed and
analyzed in this paper: data quality assessment layer: process
variable assessment layer; plant condition assessment layer:
and sensor network adaptation layer.

While the first three layers are based on the models and
techniques introduced in this paper. the last one uses the
so-called rational controllers developed in [I]-[3]. which
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intend to select the sensor network state so that the plant
assessment is optimized (as quantified by the entropy of
the probability mass function (pmf) identified in the plant
condition assessment layer). With the exception of our
preliminary results reported in [4]-[6], and a different
approach developed in [7] and [8], to the best of our
knowledge. such systems are not described in the current
literature.

The outline of the paper is as follows: Section II is
devoted to modeling issues and problem formulaton. The
four layers mentioned above are described in Sections 111-VI,
respectively. Results of numerical evaluation of the resulting
system are reported in Section VIL Finally, the conclusions
and directions for future work are given in Section VIIL
Due to space limitations. many details and all the proofs are
omitted and can be found in [9].

1I. MODELING AND PROBLEMS ADDRESSED

This section presents models of all components of the
resilient monitoring system addressed in this paper. namely,
process variables, sensors, attacker, plant, and sensor
network. In addition. it describes problems addressed in the
design and analysis of all the four layers of the monitoring
system architecture. Finally. it introduces a measure of
resiliency that quantifies the efficacy of monitoring svstems
under malicious attacks.

A. Process variable

Model: Let V denote a process variahle, and V' be a
continuous random variable that represents the values it takes
according to the probability density function (pdf) f, (¢). In
operations, process variables are often characterized as being
normal or anomalous, for instance. low or high. To model
this situation, introduce a discrete random variable V7 with
outcomes Low (L). Normal (N), and High (H) defined by
the following probabilities:

Ry . Ry
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where Vi, and V. are the minimum and maximum
values of 'V, respectively, and R, and R, are delined by
technological considerations so that Vi, < R < Ry <
Vinax. Thus, V is represented by a discrete random variable,
V7. with the universal set

¥ = {L,N, H} (2)

and the probability mass function (pmf), 2(17). given in (1).
The dynamics of 'V in each of its regions, L. N. and H,
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are characterized by transfer functions denoted as GY (s),
G%(s), and GY;(s). In the simplest case, d.c. gains of these
transfer functions, i.e.,

ar 2 GY(0), ax 2 GX(0), an 2 GY(0), 3)

can be used to characterize the statics of V in regions L, N,
and H.

Thus, the model of a process variable is defined by the pdf
of V, pmf of V, and the transfer functions GY (s), G (s),
and GY(s).

B. Sensor

Model: Let S be a sensor assigned to monitor process
variable V, and S a continuous random variable representing
its projected data; the pdf of S is denoted as fz(3). As in
the case of the process variable, the sensor measurements
can be represented by a discrete random variable, S, with
the outcomes low (L), normal (N), or high (H), and the pmf,
P(S), defined by

R1 R2
Py = [ f5(3)ds, PY = [ f5(3)d5,
Vinin Ry 4)
) Vimax (
Ry

where R; and R, are the same as in (1). Thus, S has the
same universal set as V/, but possibly a different pmf (given
by (4)). The pmf’s P(V') and P(.S), may differ due to natural
or malicious causes. For example, they may have different
variances and/or expected values. We quantify the measure
of discrepancy between P(V) and P(S) by a parameter
referred to as Data Quality (DQ), which takes values on the
interval [0, 1], with DQ = 0 implying that the sensor is not
trustworthy at all, and D@ = 1 indicating that it is perfectly
trustworthy. While the issue of DQ assignment is addressed
in Section III, we use it below to further define the sensor
model.

Since DQ is not a statistical quantity, a model of its effect
on the relationship between random variables V' and S must
be introduced. To accomplish this, define the quantity

1
3
referred to as the sensor believability. When D@ is close to
1, B is also close to 1; when D@ is close to 0, B is close
to % implying that each outcome of V' is equally plausible.
Using the believability, we define the conditional pmf of V'
given S as follows:

P{V=c¢|S=0} = B, 6
PV 4olS=0} = 1, ©

where 0 € ¥ (defined in (2)). Clearly, this implies that V'
has the same outcome as S with probability B, and two
other outcomes with equal probabilities. ~
Thus, the model of a sensor is defined by the pdf of .S, pmf
of S, data quality D@, believability B, and the coupling (6).

B:%DQ+ 5)

Problems:

1) Based on the models of the process variable and the
sensor introduced above, develop a method for DQ
assignment. This is carried out in Section III.

2) Given the sensor measurements Si,Ss, ..., Sp, ...,, and
its data quality DQ, develop a method for calculating
an estimate of P(V'), denoted as P(V = o), 0 € 3,
and specified by

lim P(V = o|sy, $2, ..., $n; DQ). @)
n—roo

3) If multiple sensors, e.g., S; and So, monitor a process
variable V, develop a method to identify

ILm P(V =o0ls1,...,50; DQ1; 5%, ...,52; DQ3).  (8)
n oo

This and the previous problem are considered in Section
Iv.

C. Attacker

Model: The attacker modifies sensor measurements in
order to project misleading information. In formal terms,
this implies that the attacker modifies f5(5) by changing
its variance or expected value, or both. Our preliminary
investigation indicates that modifying expected values is
more damaging for resilient monitoring than modifying
variances. Therefore, the model of the attacker considered
in this paper is that for a sensor under attack,

E[S] # E[V], ©)

where F[.] denotes the expected value. This implies, for
example, that, while process variable V is in state N, sensor
S may project a signal testifying that V is in state H or L.

The attacker model (9) is considered throughout this
paper. In particular, it is used in Section III for data quality
identification. We note, however, that other models of the
attacker could be considered using the approach developed
in this paper.

D. Plant

Model: Let G denote the monitored plant, and G be the
discrete random variable representing its condition, which
can be either normal, Ng, or anomalous, A1, Ao, ..., Ay.
However, to make the presentation more transparent, we
assume that the anomalous states of the plant are analogous
to those of the process variables, i.e., low (Lg) and high
(Hg). Thus, the universal set of G is

Ge Ya = {Lg,Ng,Hg}. (10)

As far as the plant model is concerned, we assume that
in the case of a single process variable it is specified by the
conditional pmf of V' given G, i.e.,

G: P(VIG), Ve, GeXg. (11)

In the case of multiple process variables, V1, Vs, ..., V,
the plant model is given either by a vector of conditional
pmf’s

G:[P(1|G), P(V2|G), .., P(Vu|G)], Vi €3,

G exg 1%
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or by a joint conditional pmf

G:P(Vi,Vs,..,VM|G), Vi€ X, G € Xg. (13)

Problem: In the case of a single process variable monitored
by a single or multiple sensors, given conditional pmf(s)
(7) and the plant model (11), estimate the pmf of the
plant state, P(G), G € Y. In the case of M process
variables, P(G) must be identified based on either plant
models (12) or (13) and the estimates of process variable
pmf’s, P(V7), ..., P(Vyy). This problem is solved in Section
V.

E. Sensor network

Model: Consider plant G with process variables V1, ..., V.
Assume that the sensor network, which monitors G, consists
of two types of sensors: dedicated and free. Each dedicated
sensor monitors a specific process variable; in this situation,
the only decision to be made in the framework of resilient
monitoring is whether to use the measurements of this sensor
for P(V') identification or not. Each free sensor is wired so
that it can monitor any of the process variables to which it is
connected. For example, thermocouples can be wired so that
they could measure the temperature at either of two points
on a boiler at a power plant. In this situation, the decision
to be made is not only whether to use the measurements
of a free sensor, but also which process variable this sensor
should be monitoring.

The first of the above situations is referred to as
non-contentious and the second as contentious. An example
of each of these situations is given in Figure 1. Note that in
the contentious case, the subscript of the free sensor lists all
process variables to which it is connected.

The state of a dedicated sensor is denoted as either 1 or
0, with 1 implying that its measurements are used for the
process variable pmf evaluation, and 0, that they are not. The
state of a free sensor is denoted by a vector with elements 1
and 0, indicating to which process variable it is assigned to,
if at all. For instance, the free sensor of Figure 1(b) has the
states (1, 0), (0, 1), and (0, 0), implying that it is assigned
to V1, Vo, and to neither, respectively.

O

(1,0) i 0,1)

(a) Non-contentious (b) Contentious

Fig. 1. Types of monitoring systems

Let X denote the state space of the sensor network and
x a particular state in X. Let P,(G = o), 0 € g, be the
estimate of plant pmf when the network is in state = and let

I}(G) be the entropy of this pmf, i.e.,

- Y k(G

eASDINe]

=0 log3 (G = 0). (14)

Clearly, I,(G) quantifies the measure of uncertainty in
plant assessment — the smaller [,(G), the more certain
the assessment is. Using fx(G), the problem of resilient
monitoring can be defined as follows:

Problem: Autonomously (i.e., without any external
interference) and in a decentralized manner (i.e., without
communication among the sensors) determine the state of
the network at which I, (G) is minimized, i.e., find z* € X
such that

I+ (G) = min I,(G),

zeX {as)

and have the network operate in this state with the largest
probability. An approach to solving this problem is outlined
next.

E Adaptation and measure of resiliency

Model: As mentioned above, in the non-contentious case, the
decision to be made with regard to each sensor is whether
to use its measurements for pmf (7) identification or not. In
addition, in the contentious case, a decision must be made as
to which process variable a free sensor should be assigned. In
this work, these decisions are made by the so-called rational
controllers.

The theory of rational behavior and rational controllers
has been developed in [1] and further extended in [2], [3].
While the properties and behavior of rational controllers are
described in Section VI, we note here that they are used in
the current work to force the network to operate in the state
x* (i.e., the state resulting in the smallest entropy I~ (G))
with the largest probability.

To characterize the efficacy of this adaptation procedure,
we introduce the notion of measure of resiliency. Let P,(Q)
be the estimate of the plant pmf when the network is in
state © € X. Let the probability of the network operating in
state « be 7,. Then, introduce the expected value of P, (G),
r € X, given by

P(G) =) mP(G

zeX

(16)

To quantify the measure of resiliency, we analyze the

“distance” of P(G) from the true pmf of the plant, P(G).
This is accomplished using the Kullback-Leibler divergence

[11]:
D (P(G)Hﬁ(c)): Y Pla= U}logggGiU}. 17)

oEX G - U}

Based on this expression, we introduce the following
measure of resiliency (MR):

D (P(O)]|Pu(@)) - D (P(G)||P(G))

e D (P@)I1Pu(@)

, (18)

4985



where P,.(G) is the estimated plant pmf of the non-resilient
system, i.e., when the monitoring system continuously
operates assuming that DQ,; = 1, Vi. Clearlyy, MR < 1,
and the value 1 is attained when P(G) = P(Q).

Based on the above, we formulate the following resilient
adaptation problems:

Problems:

1) Design the structure and select the parameters
of rational controllers appropriate for the resilient
monitoring system.

2) For the system, thus designed, evaluate its performance
as quantified by the measure of resiliency (18).

The first of these problems is solved in Section VI and the
second one in Section VII.

III. DATA QUALITY ASSESSMENT LAYER
A. Approach

In the case of the mean-based attacker introduced in
Subsection II-C, it could happen that a compromised sensor
produces more self-consistent data (i.e., data with smaller
entropy) than non-compromised ones. Since the resilient
monitoring system uses entropy to quantify desirable sensor
network states, this may lead to erroneous decisions as
to which sensors should and which should not be taken
into account. Clearly, this problem cannot be avoided by
using traditional statistical tools, and non-statistical methods
are necessary. In the current paper, this is accomplished
using active identification based on probing tests: the
process variable is probed by a rectangular signal, and
the observed sensor responses are analyzed from the point
of view of their consistency with the d.c. gains of the
process variable, introduced in (3). The sensors with larger
consistency are viewed as more trustworthy, and their DQ is
assigned accordingly. This is the approach to DQ assignment
developed in this section.

B. Probing signal

In general, any type of deterministic or random probing
signals could be used. We utilize here the simplest probe —
a rectangular pulse of amplitude Ay and duration T, applied
at the time instant %o, i.e.,

u(t) = Aprectr(t — to). (19)

The value of Ag should be selected sufficiently small so
that the process variable remains in the same state (L, N, or
H) before and during the probe. The value of 7" should be
selected so that the process variable reaches a small vicinity
of its steady state defined by the probe.

C. Probing inconsistency

Let i € {1,2,..., Ns}, where Ny denotes the total number
of sensors monitoring a given process variable V. Further,
let the mean value, E[S;], of the measurements of sensor S;
before the probe be ys,, and at the end of the probe be fis,.
Clearly, the difference between these two values should be

equal to the d.c. gain of the process variable transfer function,

which corresponds to its region (i.e., L, N, or H), multiplied
by the amplitude of the probe, i.e.,

fhs; — ps; = Aoki(llsl)v (20)
where
oy, if us, € L
ki(ps,) =< an, if ps, € N (21)

Qy, if Us; € H

and o, ay, ay are defined in (3). So, if a sensor is not
attacked, the quantity (fis, — ps,) — Aoki (s, ) is zero. If a
sensor is attacked, it may be large. To discriminate between
these two situations, we introduce the notion of probing
inconsistency (PIC) of a sensor, as follows:

— ps;) — Aoki (ps,)]

where, k;(us;) is given in (21). When the attacker, being
unaware of the probing signal, maintains the same average
values of its signals before and during the probe, PIC; =
Aok;(us,). When the attacker is anticipating the probe, but
does not exactly know A or tg, PIC; again can be large.
Only when the attacker is anticipating the probe and knows
Ap and ty exactly, PIC; is small, and, thus, a sensor under
attack may erroneously be recognized as a non-attacked one.
To prevent this, a random A can be used for each probing
signal, although, in this paper, we do not address the issue of
anticipating attackers with complete knowledge of the probe.

PIC; = |(fis, (22)

D. Data quality assignment

While various functions of PIC; could be used for DQ
assignment (see [5]), in this paper we assign it according
to

DQ; = e~ "I, (23)

where F'(PIC;) is a non-negative monotonically increasing
function of PIC;. Again, various types of such functions
may be utilized. Our preliminary investigation indicates that
a good choice of F(PIC;) is

F(PIC;) =y PIC?, ~; > 0. (24)

Selecting an appropriate value of 7; is of importance.
Indeed, if this constant were too small, even sensors with
large PIC; would have relatively large DQ;, which is
undesirable; if it is too large, even sensors with small PIC;
would have relatively small DQ;. Thus, this constant should
be selected so that the largest tolerable PIC};, denoted by
PICy;,, results in the smallest D@);, which is a design
parameter. If this parameter is selected as ¢ << 1, the
considerations based on (23) and (24) lead to the following

Yi-

Ine
Vi = vi(us,) = —T%7 (25)
where PICy; (us,) is
[ Ao(ar — aw)l, if us, € L
|Ao| max{[(ax — v )|, [(ax —aw)[}, if pus, € N (26)
|AQ(aH - aL)|, lf I,Lsi € H.
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Equations (20)-(26) constitute the data quality assignment
layer of the resilient monitoring system designed in this

paper.
IV. PROCESS VARIABLE ASSESSMENT LAYER

As indicated in Subsection II-B, the purpose of this layer
is calculating P(V), i.e., the estimate of P(V) based on
Sensor measurements Si, ..., S, ... and its data quality, DQ
(see (7)). Below, we first carry this out for a single sensor
and then for multiple sensors.

A. Process variable pmf estimation using data from a single
sensor

Consider the process variable V monitored by sensor S with
data quality DQ. Let P,(V = o), 0 € ¥ (see (2)), be the
estimate of P(V = o) based on n sensor measurements and
DQ, ie.,

A

P,(V=0)= P(V =0|s1,..., 5; DQ). (27)

For convenience, denote P,(V = o) as hy,(n), o € %,
n € N, and introduce the following recursive procedure for
calculation of h,(n):

he(n+1) = he(n) + en(n) [R5 (Sn+1) — ho(n)],  (28)
with initial conditions
o (0) = é,vo. 29)
In equation (28), €, is either a small parameter, i.e.,
0<ep<<l1 (30)
or a monotonically decreasing sequence, €, = ¢€p(n),

satisfying the conditions:
o0 (o]
0<en(n) <1, Zeh(n) = oo, Ze%(n) <oo. (31
n=1 n=1

As for the set point of (28), i.e., h%(Sp41), it is defined,
based on the sensor believability (5), as follows:

N A | B, if sp41 =0
w2 Ta 020
Thus, the dynamical system (28)-(32) defines the evolution
of P,(V) based on sensor S measurements and its DQ. The

limit of this evolution is characterized as follows:
Theorem 4.1: 1) Under Assumption (30), there exists
0 < €y << 1, such that for all 0 < €, < €g, recursive
procedure (28), (29), (32), converges in probability to

the limit given by:

(32)

he(n) < DQ.P(S = o) +

L 3DQ as n — oo. (33)
2) Under assumption (31), convergence to the same limit
takes place with probability 1.
Proof: See [9]. X O
Thus, according to this theorem, P(V') depends not only
on sensor S measurements, but also on DQ. Observe that
if D@ is close to 1, the estimated pmf of V is close to

the pmf of S, which is identical to what is postulated by
classical statistics. Howeyer, if D@ is close to 0, the same
measurements result in P(V) being practically uniform and
independent of the sensor measurements. For all intermediate
values of DQ, P(V) is an affine function of DQ.

The recursive procedure (28)-(32), referred to as the
h-procedure, is the basis of the process variable assessment
layer using data from a single sensor.

B. Process variable pmf estimation using data from multiple
SEnsors

Consider process variable V monitored by two sensors, S;
and So, with data quality D@, and D@5, respectively. Let
P%i(V),i € {1,2}, be the estimate of the pmf of V obtained
from sensor S; measurements and the recursive procedure
(28), (29), (30), (32), i.e.,

PSU(V =0) 2 lim P(V =alsi, ..., s5; DQ1),

R A n— 00 (34)

P52(V=0) = lim P(V=o0l|s,...,52;DQs).
n—oo

The question addressed here is: How can one obtain an
estimate of the pmf of V, based on the measurements of
both sensors, S; and Ss, simultaneously? To answer this
question, we use the so-called Dempster-Shafer combination
rule [12]. Namely, let P%1%2(V = o), ¢ € ¥, denote the
sought estimate, i.e.,

lim P(V =olsi,...,sL; DQy;s2,...,5%: DQ5).

n—oo

Then, according to the Dempster-Shafer rule,

BS1S2 (1 — o) — P8 (V=0)P5(V=0)
PrEy=a) > PH(V=0)P%(V=0)

, 0 €. (35

Clearly, rule (35) can be used for more than two process
variables (by combining all pmf’s simultaneously and
normalizing by their sum). Note that the entropy of
P%1%2(V) is not necessarily smaller than that of P5*(V))
and P52(V). So, the pmf with the smallest of three entropies
should be used in the plant assessment layer.

V. PLANT ASSESSMENT LAYER

The purpose of this layer is to estimate the pmf of G,
ie, P(G), G € Xg, using the process variable pmf
estimates, P(V7),..., P(Vys), and either plant model, G :
[PVA|G),.... P(Vi|G)] or G : P(V4, Vs, ..., Vu|G), V; €
¥, G € Y (see Subsection II-D). With either of these
models, P(G) is evaluated based on Jeffrey rule [10] and
Dempster-Shafer rule [12], using the following procedure:

(a) Given [P(V1|G), P(V»|G),...,P(Vy|G)], assign the

initial plant pmf as

1 1 1
P ==, =, =|.
(b) Calculate the initial joint pmf of V; and G,
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(c) Calculate the marginal probability

Po(Vi)= Y Po(V;,G), i=1,2,..,M. (38
GeXg
(d) Apply Jeffrey’s rule:
P(V;,G) = Py (V;, G) P(V;) i=1,2,...M. (39)
Py (Vi)'
(e) Marginalize (39) to obtain the plant pmf estimate
PY(G)= > P(Vi,G), i=1,2,.,M. (40)

V,ex

() If M > 1, combine the pmf’s obtained in (40) using
Dempster-Shafer rule, as follows:

HPV = 0g)

P(G =o0g) = , 06 €Xg. 41
Z H PV =0g)
o =1
If the plant model is given as P(Vi,Va, ..., Vi|G),
marginalize it to obtain
PVIIG) = > P(W,Va,..,Vi|G), 42)
Vizi €
1,7 € {1,2,..., M }. Then, follow steps (a)-(f) above.

VI. SENSOR NETWORK ADAPTATION LAYER

The sensor network adaptation layer is based on rational
controllers and temporal properties described in this section.

A. Rational Controller

Rational controllers, introduced in [1], are decision
making devices that possess two properties: ergodicity and
rationality. The ergodicity property implies that all states in
the decision space are visited with a non-zero probability.
The rationality property implies that the residence time in
states with a smaller penalty function is larger than in those
with a larger one. The degree to which this distinction is
made is referred to as the level of rationality.

In the current work, we use the rational controller defined
by the following residence time in state z € X:

’ Towrs if 1,(G) < B
(i) T LG5,

where § > 0 is a small number (design parameter), 7Ti.x
is the largest residence time (also a design parameter), and
I.(G) is, as before, the entropy of plant assessment pmf in
sensor network state x. Thus, this controller resides in states
with small entropy for at most 7},,x and less than that in other
states. To ensure ergodicity, the rational controller defined by
(43) visits all states of the sensor network in a deterministic,

round-robin manner.
Let 7., defined as

(43)

Ty —

(44)

T,
> T

reX

be the relative residence time in state z € X, and let P,(G)
be the plant assessment pmf associated with this state. Then,
the plant assessment pmf to be reported to the plant operator,

is evaluated as
P(G) =) mP(G
reX

(45)

The rational controller, described in this subsection and the
pmf P(G) are used in Section VII for numerical performance
evaluation of the resilient monitoring system designed in this
work.

B. Temporal properties of adaptation

From the temporal point of view, the adaptation layer consists
of epochs; K epochs (where K is the number of states in the
sensor network) comprise a cycle; at the end of each cycle,
P(Q) is reported to the plant operator.

For each € X, the epoch consists of three periods:

e DQ evaluation period, Tpq

o Process variable(s) and plant pmf evaluation period,

T&M
o Residence period in state z, T,.

Assuming that the sensor measurements are provided every
0.01 seconds, and using the procedure described in Section
III, Tpq is evaluated to be 5 seconds. Using the procedures
described in Sections IV and V, the duration of process
variable and plant assessment, T¢y,, iS about 6 seconds. The
maximum residence period, Ti,,«, can be selected as desired.
If Thhax is selected to be 1 second, the duration of each epoch
is less than or equal to 12 seconds.

As mentioned above, K epochs constitute a cycle, wherein
each of K states of the sensor network is visited. So, the
cycle duration is, at most, 12K seconds. Thus, the resilient
monitoring system designed in this paper provides the plant
assessment pmf, P(G), within at most 12K seconds. This
temporal organization is used in the next section to test the
performance of the resilient monitoring system designed in
this work.

VII. PERFORMANCE EVALUATION OF THE FOUR-LAYER
RESILIENT MONITORING SYSTEM

This section presents the performance evaluation of the
designed resilient monitoring system for two sensor network
configurations, namely, non-contentious and contentious. The
systems considered and their parameters are described in the
following subsection.

A. Systems considered

Non-contentious sensor network: This system is shown in
Figure 1(a). The plant G consists of two process variables,
V1 and V5. Each process variable has two dedicated sensors,
i.e., sensor S;j, 7,7 € {1, 2}, monitors process variable V.
The random variable Vj, i € {1,2}, that characterizes V;,
takes values on [0, 10]. This interval is divided into three
regions, [0, 10/3), (10/3, 20/3], and (20/3, 10], where
the processyariable is viewed as L, N, and H, respectively.
Moreover, V; is assumed to be a Gaussian random variable,
whose distribution is specified as N (uy,,0v,), with the
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standard deviation being sufficiently small so that any
realizations of V; outside [0, 10] can be ignored. Similarly,
the values taken by sensor S;; is described by the random
variable Sij, whose distribution is given by N (us,;,0s,;)-
All the sensors are assumed to possess a sampling period
Ts = 0.01 seconds.

The d.c. gains (3) of the process variables are o' = 2,
ay' = 1.8, oyt = 162, 0> = 1.5, ay> = 1.3, and
ay? = 1.1. Bach process variable, V;, is probed by a
rectangular signal (19). The magnitudes of the probe signals
are AE)“ = 0.05 and Agz = 0.1. The parameter, €, associated
with the DQ assessment layer (see (25)), is assigned as 0.02.

Regarding the h-procedure, we choose €, to be 0.01.
The stopping rule of this procedure is defined as follows:
|ho(n+1) —hy(n)] < 107%. For the assumed sensor
sampling period and stopping rule, convergence of the
h-procedure is achieved in approximately 6 seconds.

The plant models are assumed to be

[ 0.9 0.045 0.055 ]
PW|G) = 0.05 091 0.055 |,
0.05 0.045 0.89
] ] (46)
[ 0.8 0.095 0.0975 ]
P(W|G) = 0.1 0.81 0.0975
0.1 0.095 0.805 |

With respect to the sensor network adaptation layer, the
measure of rationality of the rational controller is assigned
as N = 2. The parameter 3 (see (43)) is chosen as 0.01,
which is the entropy of a pmf wherein the largest element
is approximately 0.998, and the remaining two elements are
equal. The maximum residence time, Tj,.x, is chosen as 1
second. Given the parameters introduced above, it turns out
that for all scenarios considered, the plant assessment pmf,
P(G) is reported to the operator in roughly 165 seconds.
Contentious sensor network: This system is shown in
Figure 1(b). Each process variable has one dedicated sensor.
Additionally, a free sensor is wired to monitor either of
the two process variables. Sensor S; refers to the dedicated
sensor that monitors V;, i € {1,2}, while S denotes
the free sensor. The sensor measurements are distributed
according to N (yus,,0s,) and N (us, ,, 05, ,), respectively.
All other parameters of this system remain the same as in
the non-contentious case. For all scenarios considered, the
pmf P(G) is reported in approximately 121 seconds.

B. Performance analysis in the non-contentious case

The performance of the resilient monitoring system, under
various scenarios, is described below:
Scenario 1: The plant is actually in the low state, i.e.,
P(G) =[1, 0, 0], with gy, = 1.6, gy, = 1.7, and oy, =
0.01, i € {1,2}. Sensors So; and Soo are captured, and their
mean shifted to show normal. The statistics of the sensors
are characterized by us,, = 1.5, us,, = 1.6, us,, = 6.0,
Msyy = 9.8, 05, = 0.1, 05, = 0.13, 05,, = 0.15, and
0s,, = 0.11. Based on these data, the DQ’s of the sensors are
evaluated as DQ; = DQ12 = 1.0, DQ21 = DQay = 0.02.
The resulting performance of the monitoring system is

illustrated in Figure 2. As one can see, the rational controller
forces the captured sensors to be disregarded. The plant
assessment pmf, P(G), is [0.8807,0.0559,0.0634], which
indicates that the plant is, indeed, in the low state.

_For the non-resilient system, the plant assessment pmf,
P (G), is [0.6828, 0.2765, 0.0407]. This leads to the measure
of resiliency being MR = 0.6671, which testifies to the
efficacy of the designed resilient monitoring system.
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Fig. 2. Relative residence time for Scenario 1

Scenario 2: The plant and process variables are actually
in the low state, and all four sensors are captured, with
their means shifted to indicate high. The following
statistics are assumed: py, = 1.2, puy, = 1.3, oy, = 0.01,
i e {12}, ps,, = 82, ps, = 83, fs, = 9.1,
sy = 9.2, 05, = 0.1, 05, = 0.15, o5,, = 0.12,
and o0s,, = 0.11. The sensors DQ’s are identified as
DQ11 = DQ12 = DQ21 = DQ22 = 0.02.

In this scenario, the rational controller resides in
each state of the sensor network for roughly the same
duration of time. The plant assessment pmf, P(G), is
[0.3235,0.3173,0.3592], which implies that all plant states
are almost equally plausible.

The non-resilient system obtains Py (G) =
[0.0069,0.0059,0.9872], which indicates erroneously
that the plant is in the high state. The measure of resiliency
is calculated to be MR = 0.7733, which, once again,
reflects the advantages of the resilient monitoring system
presented in this paper.

C. Performance analysis in the contentious case

Scenario 3: The process variables are actually high due to
a plant anomaly, i.e., P(G) = [0, 0, 1]. The statistics of the
process variables are assumed to be characterized by py, =
9.1, py, = 9.0, and o, = 0.01, ¢ € {1,2}. The sensor S is
captured, and its mean shifted to show normal. The statistics
of the sensors are characterized by ps, = 5.2, ps, = 9.2,
ps,, = 9.1, o5, = 0.1, o5, = 0.11, and o5, , = 0.15.
Based on these data, we calculate sensor D@Q’s to be DQ; =
0.0433, DQ2 = 1.0, and D@ 2 = 1.0.

The most preferred states of the sensor network, with equal
probability, are (1(10)1) and (0(10)1). The plant assessment
obtained is P(G) = [0.0130,0.0120,0.9750].

The non-resilient system reports

Py(G) =05 (13(1(10)1)(@) + ]5(1(01)1)(6')‘[)@_1) . @7

Using (47), we obtain P, (G) = [0.0219,0.3214, 0.6567],
which results in the measure of resiliency M R = 0.94.
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Scenario 4: The plant is actually in the low state, i.e.,
P(G) = [1, 0, 0], with py, = 1.5, gy, = 1.6, and
oy, = 0.01, ¢ € {1,2}. The free sensor is captured, and
its mean shifted to show high. When measuring Vi, the
statistics of S is characterized by pus,, = 8.5 and
0s, , = 0.1. When measuring Vy, its mean and standard
deviation are given by Ms,, = 87 and os,, = 0.1,
respectively. Moreover, the attacker’s actions are such that
sensor S; o does not reflect any shift in its expected value
due to the probe signals, i.e., fis, , = is, ,. The statistics of
the other sensors are characterized by ps, = 1.4, us, = 1.7,
0s, = 0.13, and o5, = 0.1. Based on these data, the sensors
DQ@)’s are identified as DQ); = DQ2 = 1.0, and D@ » =~ 0.

The resulting performance of the monitoring system
is illustrated in Figure 3. The residence time is largest
in states of the sensor network where both the dedicated
sensors are active. The plant pmf assessment, P(G), is
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Fig. 3. Relative residence time for Scenario 4
[0.9786,0.0097,0.0117].

The non-resilient system obtains Py (G) =
[0.4931,0.4662,0.0407]. The question arises as to why
this pmf takes place, given that the dedicated sensors
indicate low, while the free sensor indicates high. This
phenomenon can be explained as a manifestation of the
Zadeh counterexample (see [13]): Assume we have two
candidate pmf’s of V, given by P;(V) = [0.95,0.05,0]
and P,(V) = [0,0.05,0.95], i.e., indicating low and high,
respectively. Combining them using Dempster-Shafer rule
results in Py2(V) = [0, 1,0], which indicates normal. This
conclusion was not obtained from either P, (V') or Py(V),
which is paradoxical. In Scenario 4, the relatively large
value of Py(G = N) is precisely due to this phenomenon.
Note that the resilient system prevents this aberration
by appropriately assigning D), and adapting the sensor
network according to the plant pmf’s entropy in each state.

The measure of resiliency in this scenario is M R = 0.97,
which, again, testifies to the efficacy of the resilient
monitoring system designed in this work.

VIII. CONCLUSIONS AND FUTURE RESEARCH

This paper shows that the four-layer architecture developed
is a viable approach to the design of resilient monitoring
systems. Numerous problems, however, remain open. Some
of them are as follows:

e Improving models of process variable, plant, and
attacker by making them more general and practical.
For example, attackers other than mean-based should
be introduced and analyzed.

« Novel methods of active data quality assessment, which
would be more effective and simpler than the probing
technique developed in this paper.

o Improving the speed of convergence to the desirable
sensor network state. This may be accomplished by
using recursive versions of process variable and plant
assessment estimates.

o Developing novel types of rational controllers that
would lead to faster network adaptation.

o Fighting the “curse of dimensionality”. An approach
to combating this problem could be based on
decomposition of the overall sensor network into
smaller subsystems and adapting each of them
separately.

« Most importantly, practical application of the developed
resilient monitoring systems is a challenging task for
future research.

Solutions to these problems will lead to a relatively
complete and useful theory of resilient monitoring systems.
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